Surface Reconstruction from Point Clouds without Normals by Parametrizing the Gauss Formula

Siyou Lin¹, Dong Xiao¹, Zuoqiang Shi^{1,2}, Bin Wang^{1,3}

¹ Tsinghua University

² Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA) ³ Beijing National Research Center for Information Science and Technology (BNRIST)

Overview

- Background and Related Work
- Motivation and Methods
- Results and Comparisons
- Conclusions, Limitations and Future Work

1.1 Existing Explicit Methods

Directly figure out how points are connected

- Amenta et al. 1998, 2000, 2001
- Dey and Goswami, 2004
- *α*-shapes [Edelsbrunner and Mücke 1994]
- Ball pivoting [Bernardini et al. 1999]

- May not guarantee watertightness
- Usually not robust to noise

1.2 Existing Implicit Methods

Compute implicit functions and extract level-set surface.

Poisson Reconstruction [Kazhdan et al. 2006]

Gauss reconstruction [Lu et al. 2018]

Smooth signed distance [Calakli and Taubin 2011]

Fast winding number [Barill et al. 2018]

VIPSS [Huang et al. 2019]

Points2Surf [Erler et al. 2020]

1.2 Existing Implicit Methods

Parametric: Poisson reconstruction [Kazhdan et al. 2006] Find *F* in a parametric space such that $\Delta F(x) = \nabla \cdot V(x)$

Nonparametric: Winding number [Barill et al. 2018]

$$F(x) = \int_{\substack{y \text{ on surface}}} \frac{-(x-y)}{4\pi|x-y|^3} \cdot V(y) dS(y) = \begin{cases} 1 & \text{for } x \text{ inside} \\ 0 & \text{for } x \text{ outside} \end{cases}$$

2 Motivation and Method

Are normals necessary?

• Normals can also be viewed as parameters.

Given V(x), compute F(x)based on certain rules

Methods requiring normals

Each rule defines a mapping: $V \mapsto F(x; V)$

Normals as parameters

- A parametric function space
- Arbitrary normals WON'T lead to a valid implicit function.

Gauss formula How to define validity
of an implicit function

2.1 Parametrizing the Gauss Formula

2.1 Parametrizing the Gauss Formula

2.2 Singularity Problem

2.2 Singularity Problem

• Jagged and noisy surface if directly used in our formulation.

2.2 Singularity Problem

- Jagged and noisy surface if directly used in our formulation.
- Can be used for smoothing noisy inputs

2.3 Underdetermined System

2.4 Adaptive Regularization

Uniform regularization

$$(AA^T + \rho \cdot I)\xi = 1/2$$

- Difficult to choose a proper ρ
- Cannot be used for nonuniform points

2.4 Adaptive Regularization

Adaptive regularization

$$\begin{aligned} (AA^T + (\alpha - 1) \cdot diag(AA^T))\xi \\ &= 1/2 \end{aligned}$$

- α can be chosen more easily
- Deals with nonuniform points

3 Results and Comparisons

- Screened Poisson Reconstruction (SPR) [Kazhdan et al. 2013]: The golden standard
- Gauss Reconstruction (GR) [Lu et al. 2018], which also uses Gauss formula
- Points2surf (P2S) [Erler et al. 2020]: a learning based method
- VIPSS [Huang et al. 2019]: a radial-basis function method

SPR and GR are facilitated with

- **PCA** normal estimation in MeshLab
- **PCPNet** normal estimation [Guerrero et al 2018]

3.1 Convergence (Conjugate Gradients)

 $(AA^T + \alpha \cdot diag(AA^T))\xi = 1/2, \qquad \xi_{init} = 0$

- Geometry converges in ~30 iters
- Running speed is ~100 iters/sec on an RTX 3090 with CuPy (40000 points).

3.2 Accuracy

 $(AA^T + \alpha \cdot diag(AA^T))\xi = 1/2, \qquad \xi_{init} = 0$

3.3 Difficult Cases: Complex Structure

3.3 Difficult Cases: High-genus Surface

P2S

SPR-PCPNet

GR-PCPNet

3.3 Difficult Cases: Thin Structure

3.3 Difficult Cases: 3D Sketches

3.3 Difficult Cases: 360° Views

3.3 Difficult Cases: Noise Resilience

- By parametrizing the Gauss formula and viewing normals as parameters, PGR gives a natural representation of the indicator function.
- By using the surface-value constraints in the Gauss formula, PGR can almost always lead to a consistent outward orientation.

• Efficiency (in seconds):

#points	Build Tree	Precompute AA^T	CG iterations	Field query	МС	Total
10000	0.46	0.98	0.23	0.68	1.02	5.14
40000	1.71	38.61	3.28	7.67	3.90	57.18

• Time: $O(N^3)$; Storage: $O(N^2)$.

• Efficiency (in seconds):

#points	Build Tree	Precompute <i>AA</i> ^T	CG iterations	Field query	MC	Total
10000	0.46	0.98	0.23	0.68	1.02	5.14
40000	1.71	38.61	3.28	7.67	3.90	57.18

- Time: $O(N^3)$; Storage: $O(N^2)$.
- Regularization & Parameter Selection:
 - Our regularization may not be the optimal
 - Optimal parameters are not easy to determine

solved

Accurate normals

• Efficiency (in seconds):

#points	Build Tree	Precompute <i>AA</i> ^T	CG iterations	Field query	MC	Total
10000	0.46	0.98	0.23	0.68	1.02	5.14
40000	1.71	38.61	3.28	7.67	3.90	57.18

- Time: $O(N^3)$; Storage: $O(N^2)$.
- Regularization & Parameter Selection:
 - Our regularization may not be the optimal
 - Optimal parameters are not easy to determine

Parametric Gauss Reconstruction

Code is publicly available at https://github.com/jsnln/ParametricGaussRecon

BUING NATIONAL RESEARCH CENTER FOR INFORMATION SCIENCE AND TECHNOLOGY

