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Overview

• Background and Related Work

• Motivation and Methods

• Results and Comparisons

• Conclusions, Limitations and Future Work



1.1 Existing Explicit Methods

Directly figure out how points are connected
• Amenta et al. 1998, 2000, 2001

• Dey and Goswami, 2004

• 𝛼-shapes [Edelsbrunner and Mücke 1994]

• Ball pivoting [Bernardini et al. 1999]

• ...

• May not guarantee watertightness

• Usually not robust to noise



1.2 Existing Implicit Methods

Compute implicit functions and extract level-set surface.

Poisson Reconstruction [Kazhdan et al. 2006] Gauss reconstruction [Lu et al. 2018]

Smooth signed distance [Calakli and Taubin 2011]

VIPSS [Huang et al. 2019]

Points2Surf [Erler et al. 2020]Fast winding number [Barill et al. 2018]



1.2 Existing Implicit Methods

Parametric: Poisson reconstruction 

[Kazhdan et al. 2006]

Find 𝐹 in a parametric space 

such that ∆𝐹 𝑥 = ∇ ∙ 𝑉(𝑥)

Nonparametric: Winding number [Barill et al. 2018]

𝐹 𝑥 = න

𝑦 on surface

−(𝑥 − 𝑦)

4𝜋 𝑥 − 𝑦 3 ∙ 𝑉 𝑦 𝑑𝑆(𝑦) = ቊ
1
0

for 𝑥 inside
for 𝑥 outside



• Arbitrary normals WON'T lead to a valid implicit function.

Are normals necessary?

Given 𝑉(𝑥), compute 𝐹(𝑥)
based on certain rules

Methods requiring normals

Each rule defines a mapping:

𝑉 ⟼ 𝐹(𝑥; 𝑉)

Normals as parameters

A parametric

function space

How to define validity 

of an implicit function

Gauss formula

• Normals can also be viewed as parameters.

2 Motivation and Method



Winding number 𝐹 𝑥 = න

𝑦 on surface

−(𝑥 − 𝑦)

4𝜋 𝑥 − 𝑦 3 ∙ 𝑉 𝑦 𝑑𝑆(𝑦) = ቊ
1
0

for 𝑥 inside

for 𝑥 outside

Gauss formula 𝐹 𝑥 = න

𝑦 on surface

−(𝑥 − 𝑦)

4𝜋 𝑥 − 𝑦 3 ∙ 𝑉 𝑦 𝑑𝑆(𝑦) = ቐ
1

1/2
0

for 𝑥 inside

for 𝑥 outside

for 𝑥 on surface

Known kernel function Normals as unknown parameters

We can solve for normals from this equation!

2.1 Parametrizing the Gauss Formula

Constraint



Gauss formula 𝐹 𝑥 = න

𝑦 on surface

−(𝑥 − 𝑦)

4𝜋 𝑥 − 𝑦 3 ∙ 𝑉 𝑦 𝑑𝑆(𝑦) = ቐ
1

1/2
0

for 𝑥 inside

for 𝑥 outside

for 𝑥 on surface

2.1 Parametrizing the Gauss Formula

Discretized 𝐹 𝑥𝑖 ≈ 
𝑗

− 𝑥𝑖 − 𝑦𝑗

4𝜋 𝑥𝑖 − 𝑦𝑗
3 ∙ 𝜇𝑗 = 1/2 for 𝑥𝑖 , 𝑦𝑗 on surface

As matrix 𝐴𝜇 = 1/2 for 𝐴 ∈ 𝑅𝑁×3𝑁, 𝜇 ∈ 𝑅3𝑁

Parametric Gauss Reconstruction (PGR)



2.2 Singularity Problem 

𝐴𝜇 = 1/2 for 𝐴𝑖𝑗 =
− 𝑥𝑖−𝑦𝑗

4𝜋 𝑥𝑖−𝑦𝑗
3We want to solve

Singular at 𝑥𝑖 ≈ 𝑦𝑗
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4𝜋 𝑥𝑖−𝑦𝑗
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Singular at 𝑥𝑖 ≈ 𝑦𝑗

• Jagged and noisy surface if directly used in our formulation.

Singular kernel Modified kernel

GR [Lu et al. 2018]



2.2 Singularity Problem 

𝐴𝜇 = 1/2 for 𝐴𝑖𝑗 =
− 𝑥𝑖−𝑦𝑗

4𝜋 𝑥𝑖−𝑦𝑗
3We want to solve

Singular at 𝑥𝑖 ≈ 𝑦𝑗

• Jagged and noisy surface if directly used in our formulation.

• Can be used for smoothing noisy inputs

Singular kernel Modified kernel

GR [Lu et al. 2018]



2.3 Underdetermined System

𝐴𝜇 = 1/2

Underdetermined,

non-square and dense

for   𝐴 ∈ 𝑅𝑁×3𝑁, 𝜇 ∈ 𝑅3𝑁

Normal 
equation

𝐴𝐴𝑇𝜉 = 1/2 𝜇 = 𝐴𝑇𝜉and for   𝐴𝐴𝑇 ∈ 𝑅𝑁×𝑁

Ill-conditioned

and dense

Adaptive
regularization

(𝐴𝐴𝑇 + (𝛼 − 1) ∙ 𝑑𝑖𝑎𝑔(𝐴𝐴𝑇))𝜉 = 1/2

Dense

Naive PGR
formulation

...and solve with Conjugate Gradients



2.4 Adaptive Regularization

Uniform
regularization

(𝐴𝐴𝑇 + 𝜌 ∙ 𝐼)𝜉 = 1/2
• Difficult to choose a proper 𝜌

• Cannot be used for nonuniform points



Adaptive
regularization

2.4 Adaptive Regularization

(𝐴𝐴𝑇 + (𝛼 − 1) ∙ 𝑑𝑖𝑎𝑔(𝐴𝐴𝑇))𝜉
= 1/2

• 𝛼 can be chosen more easily

• Deals with nonuniform points



3 Results and Comparisons

• Screened Poisson Reconstruction (SPR) [Kazhdan et al. 2013]: The golden standard

• Gauss Reconstruction (GR) [Lu et al. 2018], which also uses Gauss formula

• Points2surf (P2S) [Erler et al. 2020]: a learning based method

• VIPSS [Huang et al. 2019]: a radial-basis function method

SPR and GR are facilitated with

• PCA normal estimation in MeshLab

• PCPNet normal estimation [Guerrero et al 2018]



3.1 Convergence (Conjugate Gradients)

(𝐴𝐴𝑇 + 𝛼 ∙ 𝑑𝑖𝑎𝑔(𝐴𝐴𝑇))𝜉 = 1/2,         𝜉𝑖𝑛𝑖𝑡 = 0

• Geometry converges in ~30 iters

• Running speed is ~100 iters/sec on an RTX 3090 with CuPy (40000 points).



3.2 Accuracy

Accurate 
normals

(𝐴𝐴𝑇 + 𝛼 ∙ 𝑑𝑖𝑎𝑔(𝐴𝐴𝑇))𝜉 = 1/2,         𝜉𝑖𝑛𝑖𝑡 = 0



3.3 Difficult Cases: Complex Structure



3.3 Difficult Cases: High-genus Surface



3.3 Difficult Cases: Thin Structure



3.3 Difficult Cases: 3D Sketches



3.3 Difficult Cases: 360° Views



3.3 Difficult Cases: Noise Resilience



4 Conclusions & Limitations

• By parametrizing the Gauss formula and viewing normals as parameters, 

PGR gives a natural representation of the indicator function.

• By using the surface-value constraints in the Gauss formula, PGR can 

almost always lead to a consistent outward orientation.



4 Conclusions & Limitations

• Efficiency (in seconds):

• Time: 𝑂 𝑁3 ; Storage: 𝑂(𝑁2).

#points Build Tree Precompute 𝑨𝑨𝑻 CG iterations Field query MC Total

10000 0.46 0.98 0.23 0.68 1.02 5.14

40000 1.71 38.61 3.28 7.67 3.90 57.18
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• Efficiency (in seconds):

• Time: 𝑂 𝑁3 ; Storage: 𝑂(𝑁2).

• Regularization & Parameter Selection:
• Our regularization may not be the optimal

• Optimal parameters are not easy to determine

#points Build Tree Precompute 𝑨𝑨𝑻 CG iterations Field query MC Total

10000 0.46 0.98 0.23 0.68 1.02 5.14

40000 1.71 38.61 3.28 7.67 3.90 57.18



Parametric Gauss Reconstruction

Code is publicly available at 
https://github.com/jsnln/ParametricGaussRecon
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